
Core Chemistry GCSE Revision Booklet

Hermann Ebbinghaus demonstrated that we become less able to remember and recall information as the time elapsed since first learning it increases. In other words, regular rereading following learning improves your ability to remember, recall and ultimately understand what you have covered in lesson.

Don't forget to add dates to your checklist as you complete each task

How to get the best out of this booklet

During the lesson: Make a set of notes for a topic.

The same day: At home, re-read your class notes from the lesson.

The next day: At home, highlight and add more detail to your class notes in your booklet.

Next lesson: Complete a 'Thinking ladder' task relating to the topic.


The next week: At home, complete an exam question relating to the topic.

Within the next 3 weeks: Complete a test or exam questions and complete your flight path. (Lesson time)

The Thinking Ladder.

Complete tasks to consolidate and extend your learning. Track which tasks you complete by filling in your booklet and dating when you completed these.

The tasks start off easy at the bottom of the ladder but increase with difficulty as you get nearer the top. The more challenging the task the more advanced the skills required and therefore the higher the grade you are working towards.

	Activities
Create	1. Create a comic strip or storyboard on a topic.
	2. Write a short exam question and mark scheme.
	3. Create a song or video.
	4. Write an article on the topic for a revision guide.
	5. Create a game or animation
Evaluate	1. Opinionated octopus. Evaluate the topic using 4 strengths and 4 weaknesses
	2. Treasoning
	3. Use a piece of evidence or data and write an evaluation on it.
	4. Kerboodle Learning tests
Analyse	 Create a mind map showing links between each part of the topic.
	2. Create a flow chart to show a key process.
	Explain a piece of evidence for and against a theory or perspective.
	4. Conduct a small scale experiment to prove a key point in the topic.
Apply	 Explain a real life example for each key point.
	2. Think about the topic and explain this using a cartoon character or TV character.
	3. Complete the exam questions/ end of topic questions in the AQA book or in your
	revision guide.
	4. Kerboodle revision tasks
Understand	 Create a set of true or false statements and ask a friend to answer them.
	2. Hungary caterpillar: place all the key terms from a topic in a logical order and link
	the words together to form a caterpillar
	3. Pick out 5 key points and explain them in detail, 200 words each.
Remember	1. Write down everything you can remember about the topic from memory.
	Write down all the key terms and define them.
	Make a set of keyword flashcards.
	4. Make an acronym to help you remember a process or list.

Topic 1: Periodic Table and chemical reactions

	Notes	Re-read notes	Highlighted notes	Thinking ladder c/w	exam question h/w
Date completed					

Date							
completed							
State the definition of an element:							
State the def	inition of an at	om:		Г			
Draw the structure of the atom, stating the name and charge of each subatomic particle.							
Explain why an atom has no overall charge.							

Choose 4 elements (from the first 20) draw the electron configuration of each

0	4 He helium	20 Ne	40 Ar argon 18	8 7	krypton 36	131 Xe	54 [222] Rn	86 been
7		19 F fluorine	35.5 Cl chlorine	80 B	bromine 35	127 	53 [210] At astatine	85 16 have ated
9		16 0 0 0 8	32 S suffur 16	79 Se	selenium 34	128 Te tellurium	52 [209] Po	84 112 – 1 authentic
9		14 N nitrogen 7	31 P phosphorus 15	75 As	arsenic 33	122 Sb antimony	51 209 Bi bismuth	80 81 82 83 84 85 86 Elements with atomic numbers 112 – 116 have been reported but not fully authenticated
4		12 c carbon 6	28 Si silicon 14		Ε	119 Sn	207 Pb lead	82 atomic r ted but n
က		11 Boron 5	27 Al aluminium 13	70 Ga	gallium 31	115 In	204 TI	81 ents with report
				65 Zn	zinc 30	112 Cd	201 Hg	80 Eleme
				63.5 Cu	copper 29	108 Ag silver	197 Au	
				29 Z	nickel 28	106 Pd palladium	195 Pt	78 [271] Ds damstadtium 110
				%	cobalt 27	103 Rh	192 Ir indium	E
	H hydrogen	-		56 Fe		101 Ru	190 Os	76 [277] Hs hassium 108
			1	55 Mn	manganese 25	[98] Tc technetium	186 Re rhenium	75 [264] Bh bohrium 107
		relative atomic mass atomic symbol		52 C	chromium 24	96 Mo molybdenum	184 W tungsten	74 [266] Sg seaborgium 106
	Kev	relative atomic mass atomic symbol name tomic (proton) numbe		51	vanadium 23	_	1	73 [262] Db dubnium 105
		relativ ato atomic		48 I	titanium 22	91 Zr zirconium	40 178 Hf	72 [261] Rf nutherfordium 104
				45 Sc	scandium 21	89 Y	39 139 La *	57 [227] Ac* actinium 89
2		9 Be beryllium 4	24 Mg magnesium 12	40 Ca	calcium 20	88 Sr strontium	38 137 Ba barium	56 [226] Ra radium 88
-		7 Li lithium 3	23 Na sodium 11	% ×	potassium 19	85 Rb rubidium	37 133 Cs	55 [223] Fr francium 87

* The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted.

Cu and CI have not been rounded to the nearest whole number.

On the Periodic Table, identify and label the following:

A group A period

Metals and non-metals

- Proton number
- Mass number

Why do elements in the same group have similar reactions?				
Why are the noble gases so unre	active?			
Define the following:				
Compound	Ion	Molecule		
What does the term "conservation	on of mass" mean?			
Topic 1: Periodic To	able and Chemical Reac	tions thinking ladder		
<u>task</u>				

Topic 1: Periodic Table and Chemical Reactions exam question

homework

Topic 2: Limestone and Building Materials

	Notes	Re-read notes	Highlighted notes	Thinking ladder c/w	exam question h/w
Date completed					

What is the chemical name and formula of Limestone

What are the products of the thermal decomposition of limestone? Write a balanced symbol equation for this reaction.

Calcium Oxide reacts with water, what is the product of this reaction? Write the balanced symbol equation.

Name one use of this product,

Calcium Hydroxide reacts with carbon dioxide. Explain what will happen to the solution in this reaction and write the balanced symbol equation for it.

List two advantages and two disadvantages of using Limestone for building:

Advantages:	Disadvantages:
1.	1.
2.	2.

. .	•1	1		
Desci	adır	now	ΤO	make

Cement	Mortar	Concrete

Write the word and symbol equations for the following metal carbonates when they are;

- thermally decomposed
- react with water

Copper Carbonate, Zinc Carbonate, Calcium Carbonate and Sodium Carbonate

Topic 2: Limestone and building materials thinking ladder task

Topic 2: Limestone and building materials exam question homework

Topic 3: Metals

	Notes	Re-read notes	Highlighted notes	Thinking ladder c/w	exam question h/w
Date completed					

completed					
What is the diffe	erence between ar	n ore and a rock?			
Explain the meth	od that can be use	ed to concentrate	Copper Carbonate	: before extractio	n.
What is the diffe	erence between th	ne acquisition of r	eactive and unread	ctive metals from	the earth.
Produce a flow di	iagram to show how	w copper is extrac	cted from copper 1	rich ores.	
	active metals thar can be extracted			tals below carbon	in the
Why is electrolys	sis an expensive pr	rocess?			

Briefly explain the processes of Phytomining and Bioleaching.

Phytomining	Bioleaching

Benefits of recycling metals: ECONOMIC	Benefits of recycling metals: ENVIRONMENTAL
•	•
•	•
•	•

What is the difference between steel and iron from the blast furnace? Why is steel defined as an alloy?

Why are alloys produced?

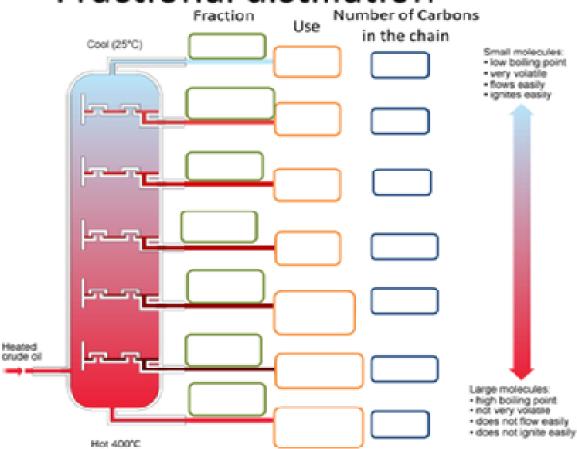
Draw a diagram to show the difference in structure between a pure metal and an alloy.

State how the properties of copper make it useful for copper pipes and electrical wires.

Topic 3: Metals thinking ladder task

Topic 3: Metals task exam question homework

Topic 4: Crude Oil and hydrocarbons


	Notes	Re-read notes	Highlighted notes	Thinking ladder c/w	exam question h/w
Date					
completed					

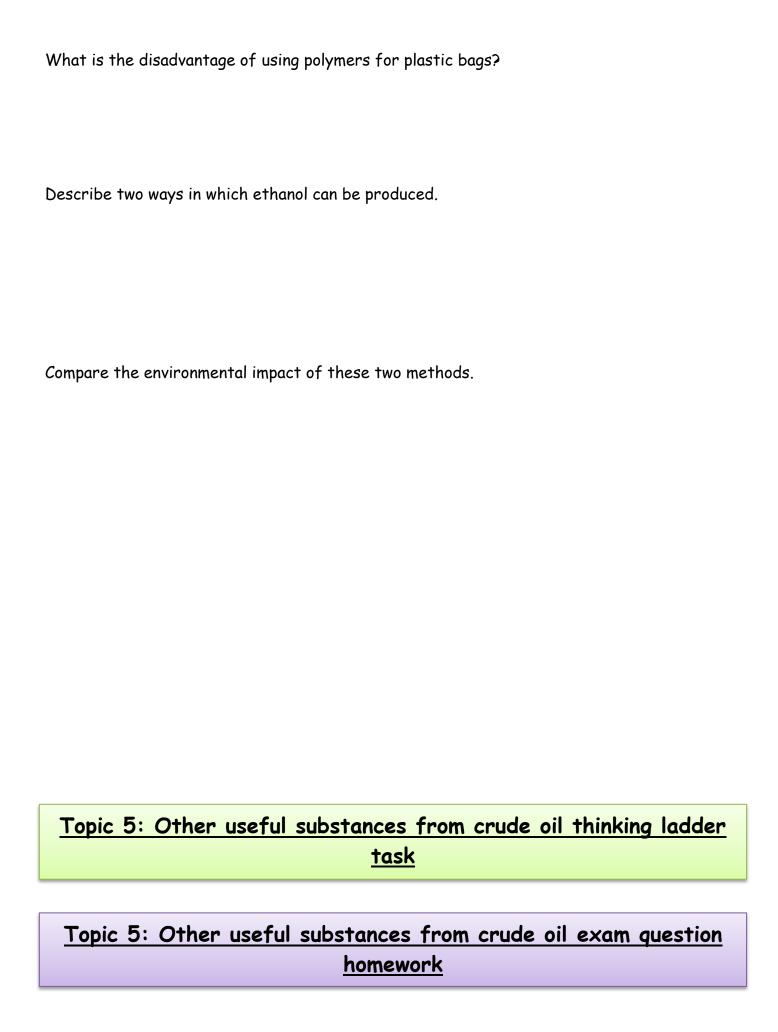
What is the difference between a mixture, element and compound?

Mixture	Element	Compound

Complete the diagram:

Fractional distillation

What is the relationship flammability?	between molecule size and	d boiling point, viscosity, e	ase of ignition, and		
Define alkanes and draw	a diagram of the first tw	0.			
List the products of the	reaction when a fuel burns	s. Why are these emission	s harmful?		
What can be done to red	luce these emissions? Nam	e two alternative fuels wh	nich are less harmful.		
Advar	ntages	Disadv	antages		
Fuel 1:	Fuel 2:	Fuel 1:	Fuel 2:		
Describe a method that can be used to measure the energy released from fuel.					
Topic 4: Cr	rude Oil and hydr	ocarbons thinking	ladder task		


Topic 4: Crude Oil and hydrocarbons exam question homework

11

Topic 5: Other useful substances from crude oil

	Notes	Re-read notes	Highlighted notes	Thinking ladder c/w	exam question h/w
Date completed					

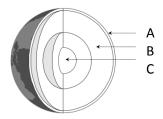
	Notes	Re-read notes	Highlighted notes	Thinking ladder c/w	exam question h/w
Date completed					
How are hydro	carbons cracked	and what is pro	duced?		
Draw a diagram	n of EthENE. Wr	rite the general	formula for an A	Alkene.	
Describe the to	est for unsatura	ted hydrocarboi	ns.		
Draw a diagram	n to show the pol	ymerisation of e	ethane.		
State three us 1.	es of polymers,	for each one des	scribe how the p	olymer is suita	ble for its use.
2.					
3.					

Topic 6 Plant Oils and their uses

	Notes	Re-read notes	Highlighted notes	Thinking ladder c/w	exam question h/w
Date completed					

Date completed						
How are vegetable oils obtained? Why are vegetable oils used in food?						
What is an emu	ılsifying agent? N	Name two uses o	f am emulsifier			
Draw a diagram to explain how emulsifiers have Hydrophobic and Hydrophilic properties.						
What is difference between saturated and unsaturated oils.						

How can you saturate vegetable oils?

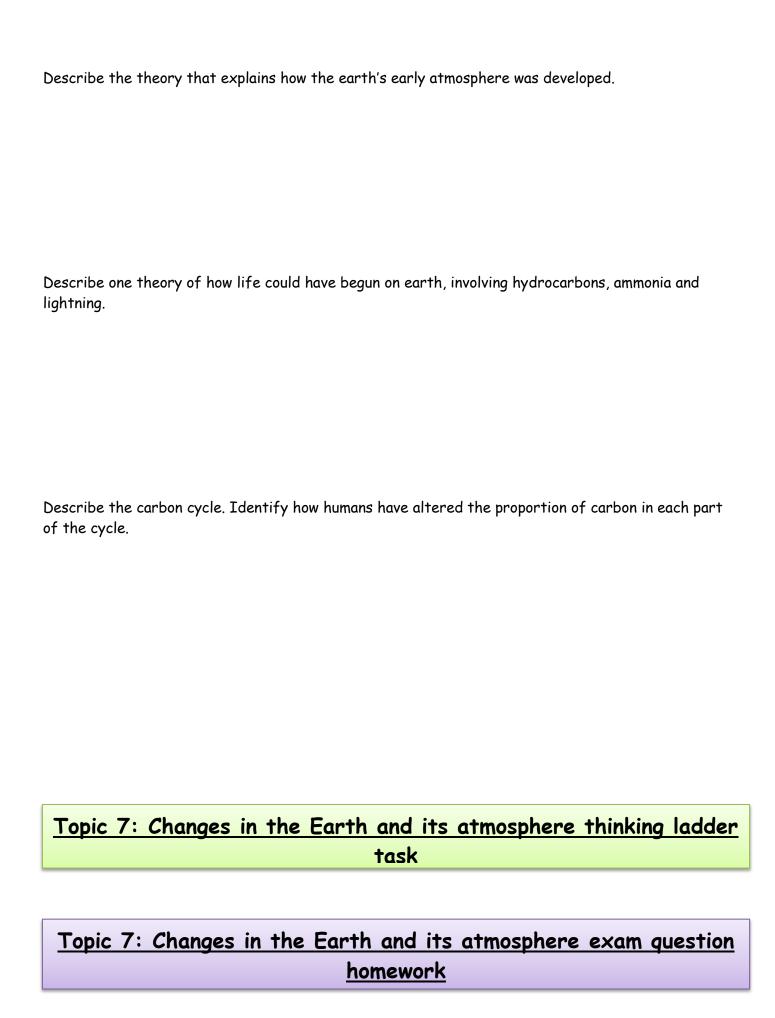

Topic 6: Plant oils and their uses thinking ladder task

Topic 6: Plant oils and their uses exam question homework task

Topic 7: Changes in the Earth and its atmosphere

	Notes	Re-read notes	Highlighted notes	Thinking ladder c/w	exam question h/w
Date completed					

Label the parts of the earth.


What is Wegner's theory? Why did people not believe it at first?

What causes the movement of tectonic plates?

How do an earthquake/volcano occur? Why is it difficult to predict them?

Describe the composition of the Earth's atmosphere.

How could we obtain pure gases from the mixture that we call air?

